Budget Studio Monitor Isolation Stands


As I’ve been finishing up the final components of my personal studio I started looking at my studio monitor floor stands. With how I have the studio currently arranged I literally backed myself into two corners. I just can’t put the monitors where they need to be using the floor stands… slightly in line with the computer displays and pointed in towards the center seating position. My desk is just huge and it leaves no room on the sides or even behind to get proper placement.

I compared a few different solutions and came away with a few standard ways studio monitors are deployed. Of those there are some pros and cons to each method. Mostly they all lead to a discussion about isolation which is simply a fancy way of stating that you want to reduce the influence the monitors have on every solid surface they touch. This reduces vibration transfer and provides the cleanest sound possible from your speakers.

The most common monitor placement methods are as follows:

Wall Mounts

These are usually limited to specific manufacturers and models where compatible mount kits are available. As the name suggests… you bolt the stand to the wall and the monitor to the stand. The solution is somewhat permanent as you only end up with minor adjustment methods. As far as isolation is concerned the only point of vibration transfer is the mounting rod between the monitor and wall. With an interior wall of less density this can create some low frequency oddities.

Studio Desks

Many commercial studio desks (from entry level all the way to commercial desks with a meter bridge) have at-height shelving to accommodate one or more studio monitors. Slap the monitors on the desks and you’re ready to go. The fallback to these solutions is that the monitors are placed directly on the desk surface which causes two specific issues. The first potential issue is vibration transfer to the entire body of the desk. The second issue is sound reflection. Depending on the design of the speakers and placement on the stand the sound waves can find an immediate spot to throw early reflections of the sound waves. In my case I do not have a multi-tier desk so this isn’t an option for me.

Floor/Desk Stands

Floor stands offer many great benefits. Properly constructed they have nearly no contact with a source of vibration short of the stand itself and can be placed above and away from any desk avoiding immediate reflection issues. There is some bass transfer into the stand itself and may only be of concern if the stand is hollow and/or the floor is not very rigid or has a large air gap between floors, etc.

When it comes to after-the-fact isolation of speakers in these deployments the focus is most often on studio desks more than floor stands but both are solved by isolation which comes in two flavors: absorption and minimizing contact. Some solutions combine both techniques.


The primary material of choice used for absorbing the vibrations caused by studio monitors and reducing the vibration transfer to the studio desk or stand surface is quite simply foam. There are a few different commercially available solutions out there but essentially there is a block or wedge of slightly denser acoustic foam placed between the monitors and base.

Minimizing Contact

The second method for reducing vibration is to reduce the total amount of contact shared between the monitor and the desk or stand. This is often handled by a matrix of vertical cones or pipes (usually covered in a rubber material) that reduce the total surface area on which the monitor rests.

Think of your car on four tires. There is a very low amount of surface area shared between your car and the road, In many cases the minimized contact of monitors is augmented by a way to ‘float’ the points of contact through a dampening material as well. So again… just like your car makes minimal contact with the road through the rubber and air-filled tires, the ride is smoother and quieter when shock absorbers are added to the mix.

After comparing all the solutions I decided the IsoAcoustics solutions looks the most promising but considering all the other expenses of putting my studio in order (along with Christmas, children, etc, etc) I can’t help but go DIY and see what I can do to get a good compromise for minimal cash.

Off we go…

The IsoAcoustics Design


I have to admit I love the way these puppies look and I know I’m not going to get an exact technical match. The point of this build is to get good isolation on the cheap. The IsoAcoustics design appears to essentially surround the posts in shock absorbing rubber, use a cupped seating point to contact the monitor, and utilize rubber feet to isolate the stand from the desk. My goals for the build are similar:

  • Minimize contact between the monitors and stands
  • Minimize contact between the stands and the desk
  • Apply some form of dampening inside the stand frame
  • Apply some form of absorption at the contact points

The Materials


I purchased 100% of the build materials for this project from my local home improvement center and here is the shopping list:

  • 4 x Five Foot ½” PVC Pipes
  • 16 x ½” PVC Side Outlets (90 degree corners with a vertical couple)
  • 8 x 2 pack 1 inch Auto Body panel plugs
  • 1 Pack of 16 furniture gripper pads
  • 16 5/8” wire grommets
  • 1 Can of spray foam insulation
  • 1 Can spray paint

Materials ran me around $40.00 total with $7.00 sucked up in spray foam and paint. Not counting paint and foam cure time each stand takes about 15-20 minutes to assemble.

The Build

We start by determining the height of our monitors on the desk. I wanted a full ten inches of clearance between the desk top and monitor.

Cut 8 PVC pipes to a length taking into account the length of the coupler minus the internal flange and the 1/2 on each end for the rubber feet and spacers. Next determine the width and depth of the stand frame to determine how many of the 16 (if width and depth match) or 8 and 8 (if width and depth differ) horizontal bars to cut from the remaining PVC stock. I decided to go square and ended up with 16 bars when coupled measured a total of 8 ¼ inches.


Cut all PVC lengths as required. Make sure the lengths are absolutely as close as possible to each other in length to reduce the chances of the stands being crooked. If you have a pipe cutter you are golden, if you have a miter box you’re fantastic, if you just have a saw, take your time and measure/cut carefully. Using a utility knife or sandpaper remove all burring from the cut ends.


Now take a box, place the end of each pipe in it, and shoot the pipe full of the insulation foam. The box is just to catch any foam that might shoot out at first blast. If any gets on the outside edge (not the end) now might be a good time to wipe it off with a rag just to save some cleanup later on.


Set aside all pipes to dry and cure per the instructions. Clean the nozzle immediately… you are going to need it again soon.


While the pipes are curing use a punch or nail and place a starting divot in the center of the round mark on each PVC coupler.


Now use a small drill bit to ensure a good pilot hole…


Then use a 5/16” drill bit and drill a hole in each coupler at the divot.

Using a utility knife cut any foam that has expanded out of the pipes. Ensure the pipe face is cleaned of all remaining residue. It may be easiest after cutting to just rub the facing down with some sandpaper.


Now assemble the stands keeping the drilled openings on the top and bottom of the vertical limits of the stand. Use a level surface and a level on the stands to ensure everything is even. Use a rubber mallet or tap a piece of wood on top of the coupler with a hammer to ensure the pipes are fully mated to the couplers. You can choose to PVC glue the stands together but considering the short runs and amount of weight on the stands I think this would be overkill.


Now inject each hole with the spray foam insulation and wait again for the foam to cure. Wipe any excess away immediately to keep the finish smooth for painting. After the foam has cured cut away any excess that may have continued to ooze out with a razor or utility knife.


If you plan to paint the stand, do so at this time with your color of choice and give it plenty of time to cure so you don’t mar the finish in the final steps.


Using a nail or awl punch an inch into the foam through each coupling hole. The point here is simply to provide a large enough pilot hole for the body mounts that is also small enough so the ‘teeth’ on the mounts have something additional to grab onto.


Now place a rubber washer or grommet on each body mount then peel the adhesive from a gripper pad and place it on the flat face of the body mount.


Push each mount into the coupler mounting hole until the washer/grommet is touching both the mount and coupler. That’s it. You are done.


Here we have the near-final view of our stands.


And now the final view in their new home.

The Construction Theory

Basically the idea behind this build was to use a lightweight yet easy to manipulate and assemble material for this project. PVC was chosen but I wanted to avoid any resonance issues with the hollow tubing so I filled the tubing with insulating foam which would dampen the chambers while not adding too much rigidity.


In addition, I didn’t want to simply build a PVC cube and provide larger contact surfaces so using the body mounts provided some additional isolation while the rubber grommets reduced contact vibration with the frame and grippers reduced contact vibration from the monitors.

The Final Verdict

I am happy with the result and it’s a bonus to have the monitors where I so desperately wanted them placed. I can also tell the isolation does work. If they are as good as a commercial solution I cannot say but I am certain they are better than simply placing them on the desk, or on a box, etc. There is definitely a difference in bass response when I compare mixes with the speakers direct on the desk vs using the isolators.

So there you have it… go forth and isolate!